
CS221 PROJECT REPORT

Playing Space Invaders and Q*bert using Deep Reinforcement Learning
Shreyash Pandey (shreyash@stanford.edu)
Vivekkumar Patel (vivek14@stanford.edu)

Abstract

The objective of this project is to build agents using reinforcement learning to play Atari games such
as space-invaders and Q-bert. We use Deep Q learning with Experience Replay to solve this task and
then implement techniques such as Double DQN and Dueling DQN to improve the performance. We
then present a comparison of these techniques and analyse the game play.

1 Task Definition and Modelling

Our goal is to build an agent for two atari games: Space Invaders and Q*bert. Our agent interacts
with the game enviroment through a sequence of observations, actions and rewards. We use the Atari
Emulator to emulate the environment for these games. The game is played in discrete time steps. At
every time step, the agent chooses an action, based on the current state or randomly, from a possible set
of actions. The emulator then simulates this action and brings the game to a new state. It also returns
any reward received during this step. Hence, we can model our problem as follows:

• State s: We consider the state at any time instance to be an array of pixel values representing the
image frame at that instance.

• Action a: The agent has six possible actions in both the games. For eg, in space invaders, the
actions are: SHOOT, LEFT (move left), RIGHT (move right), SHOOTANDLEFT (shoot and
move left), SHOOTNRIGHT (shoot and move right), NOOP (do nothing).

• Reward r: The reward is returned by the environment after the agent performs an action. We clip
the reward so that it lies in the range [-1,1].

We want to make the agent learn to play the game in such a way such that it maximises the total
score.

Figure 1: Game state, action and transition

2 Concepts

2.1 Reinforcement Learning

Reinforcement learning has been widely used to solve the problem of programming intelligent agents that
learn how to play a game with human-level skills or better. The goal is to learn policies for sequential
decision problems by maximizing a discounted cumulative future reward. The reinforcement learning
agent must learn an optimal policy for the problem, without being explicitly told if its actions are good
or bad.

1



Figure 2: Reinforcement Learning Model

Borrowed from CS 234 Webpage

2.2 Convolutional Neural Network

Recent advances in the use of convolutional neural networks (CNNs), has completely transformed the
representation learning domain in Computer Vision - making it possible to automatically learn feature
representation from high-dimensional and noisy input data such as images. High-level Computer Vision
tasks such as recognition (image classification) and detection have benefited greatly by using CNN based
features. Because of their success and versatility, there has been considerable work in enhancing CNN
components and improving such deep architectures.

2.3 Q-learning

Q-learning is a model free reinforcement learning technique. Due to a large number of states in the
game, it is impossible to make and store a Q-table which would contain the Q-values and best actions
for each state. Hence, we use a function to approximation for this task. We use a deep neural network
to model this function, which would approximate the Q-table and would calculate the Q-values for each
action, for a given state.
Q∗(s, a), where a is an action and s is a state, is the expected value (cumulative discounted reward) of
taking action a in state s and then following the optimal policy. Q-learning uses temporal differences to
estimate the value of Q*(s,a). An experience (s,a,r,s’) provides one data point for the value of Q(s,a).
The data point corresponds to the event that the agent received the future value of r + γV (s′), where
V (s′) = maxa′ Q(s′, a′); this is the actual current reward plus the discounted estimated future value. This
new data point is called a return. The agent can use the following equation called Bellman’s equation
to update its estimate for Q(s, a):

Q[s, a]← Q[s, a] + α(r + γmax
a′

Q[s′, a′]−Q[s, a])

or, equivalently,
Q[s, a]← (1− α)Q[s, a] + α(r + γmax

a′
Q[s′, a′])

. Here, α is the learning rate. Thus lesser the alpha, the more we value our experience and more the α
the more we update our experience/table with newly observed returns.

3 Approaches

3.1 Deep Q Networks

We started by first implementing a simple Deep Q Network. The architecture consisted of 3 convolutional
layers followed by 2 fully connected layers. The activations in the first four layers are relu. We use a
target Q-network, in order to circumvent the moving target problem, for calculating the target value.
The target network remains fixed during training and is updated after C (in our case, C = 10000) steps,
where in we just equate it to the online network.

Qtarget = rt+1 + γQ(St+1, arg max
a

Q(St+1, a;θ−t );θ−t ) (1)

2



Figure 3: Architecture of the network used in this project

3.2 Exploration-Exploitation Tradeoff

We can train our agent to learn the Q-values of state-action pairs using the equation in the previous
subsection. However, this gives rise to a problem. At the beginning, our agent does not have any knowl-
edge of the states or actions. Taking the action that maximizes the expected reward currently may not
be the optimal action. It may very well happen that a certain action which has a low Q-value currently,
may lead to more rewarding states. This happens because only picking the action that maximizes the
expected reward does not lead to the agent exploring all the possible states of the game.

To fix this, we make use of the ε greedy policy. In this policy, with probability ε, the agent chooses its
action randomly from the set of actions, and with probability 1−ε, it chooses the action with the highest
Q-value. We keep ε high initially and decrease it gradually. This way, the agent not just explores a lot
more states in the state-space, but also learns the optimal policy.

3.3 Experience Replay

Deep Q-Networks need to be trained for long durations in order to get the optimal policy. This may
result in several problems. If the environment is continuously changing, then after long training the
network may have forgotten information learnt from the past. One solution can then be to repeatedly
train the network on the whole sequence of episodes. Also, online training of the network would make
use of just 1 or a few frames of input data. This is not very efficient and a much better solution is to
use Experience Replay.
To implement this, we store the agent’s experiences, the tuple (st, at, rt, st+1), in a circular memory
cache. To train the network, we then randomly sample a batch of experiences, and train using the above
formulation. Meanwhile, the agent also keeps on playing the game, performing actions for various states,
and we keep on storing these experiences in the memory cache. This is an efficient way to learn from
past experiences. This way, the agent’s learning is logically separated from gaining experience. The
model becomes an offline model from an online one. The interleaving of these two processes also ensures
that the agent manages to learn and form the optimal policy.
This technique leads to many practical benefits. This way we do not need to train the network on the
whole sequence of experience repeatedly because the stored data is reused. Also, during training, we can
sample a batch of experiences and hence hardware-efficient mini batches can be used.

3.4 Double DQN

Hasselt et al. [1] discuss that the Q-learning algorithm, which we mentioned above, is known to overes-
timate action values in certain conditions. In previous works, these overestimates have been attributed
insufficient flexibility in function approximation [2], and noise [3]. A high level explanation is as follows:
Consider that due to initialization, Q-values of a particular action has a very high bias. As we take the
max over the future actions to find the value of the future state, this leads to propagation of this bias
to other action values as well and may result in the agent learning suboptimal policies.

Hasselt et al. also propose a solution to the above problem. They decouple the selection from the
evaluation in the Q-learning equation. They propose use of two networks θ and θ′. One set of weights is

3



used to determine the greedy policy whereas the other is used to determine its value. To make minimal
changes to the Q-learning algorithm, we can take the greedy policy according to the online network (θ)
and use the target network for evaluating it (θ′).

Qtarget = rt+1 + γQ(St+1, arg max
a

Q(St+1, a;θt);θ
−
t ) (2)

3.5 Dueling DQN

Wang, Ziyu, et al. [4] argue that for many states, it is unnecessary to estimate the value of each
action choice. For example, in the Space Invaders game setting, knowing whether to move left or right
only matters when a hit is imminent. In some states, it is of paramount importance to know which
action to take, but in many other states the choice of action has no repercussion on what happens. For
bootstrapping based algorithms, however, the estimation of state values is of great importance for every
state.

Figure 4: Above: Regular DQN with a single stream for Q-
values. Below: Dueling DQN where the value and advantage
are calculated separately and then combined only at the final
layer into a Q value.

The Q-values correspond to how
good it is to take a certain action given
a certain state. This can be written
as Q(s,a). This action given state can
actually be decomposed into two more
fundamental notions of value. The first
is the value function V(s), which says
simple how good it is to be in any given
state. The second is the advantage
function A(a), which tells how much
better taking a certain action would be
compared to the others. We can then
think of Q as being the combination of
V and A. More formally:

Q(s, a) = V (s) +A(a)

The goal of Dueling DQN is to have a network that separately computes the advantage and value
functions, and combines them back into a single Q-function only at the final layer. We can achieve more
robust estimates of state value by decoupling it from the necessity of being attached to specific actions.

4 Experiments and Results

4.1 Details of Experiments

We implemented our Deep Networks using Pytorch 0.2.0. We chose pytorch due to its numpy-like syntax
which was easy to learn. We use the atari emulator to simulate the games (act as the environment for
the agent). We also use the Atari wrappers which take care of certain details such as, but not limited
to:

• Converting RGB image frames to grayscale.

• Shrinking and cropping the image to a 84x84 size.

• Continuing an episode till all the lives are over.

• Stacking 4 frames together and taking them as a single input.

Although, the use of these is not clear at start but they are very essential for getting the DQN to work.
Our first try at this was without these wrappers and it did not work. The results looked random even
after 1.5 days of training.

4



One of the usefulness of cropping the images is that the top rows only contain the score of the game,
which the DQN does not need to know. The DQN already gets the reward information separately.
Hence, it is better to remove these rows rather than providing the DQN with useless information which
would only waste its time.
Taking a stack of frames together helps the agent in determining the movement of the objects. Using
just one frame, determining the movement is not possible. Hence, a stack of 4 frames is taken together
as input.

We use the following architecture for our networks:

Layer Type Out channels/Output size Kernel Size Stride

1 Convolutional 32 8 4
2 Convolutional 64 4 2
3 Convolutional 64 3 1
4 Fully Connected 512 NA NA
5 Fully Connected Num Actions NA NA

Table 1: Architecture Details. Each of the first four layers have relu activation

• We have a replay memory of size 1M (i.e) it can store 1M experiences at a time. We implement it
in a circular fashion. We start training after 50000 timesteps so that we have enough examples in
the replay memory to sample from.

• The target Q network is updated every 10000 actions. We use a learning rate of 0.00025 and
RMSProp for gradient descent with alpha as 0.95 and epsilon as 0.01.

The choice of these hyperparamters was based on our literature survey. These values seem to show the
best results, which we agree with as well.

4.2 Results

(a) Space Invaders (b) Q*bert

Figure 5: Performance of the three techniques (Average Scores)

5



(a) Space Invaders (b) Q*bert

Figure 6: Performance comparison of the three techniques(Max so far)

Algorithm Episodes trained Max Scores

Vanilla DQN 2521 324
Double DQN 3187 422
Dueling DQN 3075 440

Table 2: Scores on Space Invaders

Algorithm Episodes trained Max Scores

Vanilla DQN 3601 734
Double DQN 4718 1428
Dueling DQN 6369 2256

Table 3: Scores on Q*bert

5 Analysis

We did not train our models completely due to limited computation resources. Nonetheless, as can be
seen from figure 5, our agent’s scores do increase with time (there is a ramp after 1500 episodes), which
suggests that the agent is able to learn the optimal policy for the game. Our DQN agents and it’s double
and dueling variants are able to perform much better than baseline scores of random agents. In fact,
our dueling DQN on Q*bert is able to perform better than the initial oracle score of 1500, that we were
able to achieve by playing the game for the first time. Also, the plots have not stagnated even after
these many episodes which says that training the agent for a longer duration could result in higher scores.

Atari wrappers also saves videos of games plays of the agent. We analyze these as it was the very
purpose of this project to make an agent who learnt the best possible strategy. Following are some
observations.

As discussed in the Double DQN subsection of the Approaches section, Double DQN does show
improvement over normal DQN. The noisy estimates of actions are prevented from passing down to
future states due to which the agent learns optimal policies. The below figure also shows that using
double dqn, the agent was able to learn optimal policies when an active adversary was present.

6



(a) Adversary Approaching (b) Agent moves farther

Figure 7: Q*bert agent learns to play against active adversary

Dueling DQN shows better performance over both Vanilla DQN and Double DQN. The authors of
the original paper comment on how dueling performs particularly well when the action space is large,
because then we are bound to get similar actions. This is very much evident in Space Invaders where we
have similar looking actions (one example is: LEFT, SHOOTNLEFT). Viewing the video of the game-
plays we found that our agent was able to decide between these similar actions. When under attack, it
not just moved away but also shot.

A very interesting tactic that the agent was seen to follow in Space Invaders was that it always
stayed close to the protecting shields and never wandered too far from them. The adversary group keeps
moving from left to right covering the entire width of the screen, but the agent was never found to move
far from these shields. It would only oscillate below a shield and never between two shields. It would
just move at once between two shields.

(a) Agent under attack (b) Agent stays close to the shields

Figure 8: Agent never wanders far away from the orange protective shields

5.1 Double-Dueling DQN

Motivated by the improvements of Double and Dueling DQN, we implemented a Double-Dueling DQN,
which is just a combination of double and dueling, on Space Invaders. This was much more robust than
Double and Dueling separately.

7



Figure 9: Comparison of previous techniques with Double-Dueling DQN

5.2 Other observations

For the Q*bert one can see oscillations in the graph for mean rewards. We believe this happens because
for this game, the rules change with each level. The agent, while learning to play a higher level might
perform bad on a lower level, and then with time would improve on both the levels, ultimately resulting
in improved performance.

6 Conclusion

We make an agent to play two atari games: Space Invaders and Q*bert. Our choice of games helped us
verify the advantages of double and dueling DQN. Double DQN is successful in learning optimal policy
even when the rules are changing (Q*bert) whereas dueling DQN is able to choose better actions from
multiple similar ones in Space Invaders. We also tried implementing a DRQN but were not able to make
it work and hence do not present any results in this paper.

It would be interesting to implement Actor-Critic Methods and attention DRQN over these games
and analyse how the performance improves.

7 Acknowledgements

We would like to thank Amani Peddada, our mentor for this project, because of whom we were able to
explore many useful techniques. We would also like to thank dxyang, whose github repository helped us
figure out nuances of pytorch and other implementation details.

References

[1] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. CoRR, abs/1509.06461, 2015.

[2] Sebastian Thrun and A. Schwartz. Issues in using function approximation for reinforcement learning.
In Proceedings of the 1993 Connectionist Models Summer School. Erlbaum Associates, January 1993.

[3] Hado V. Hasselt. Double q-learning. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel,
and A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages 2613–2621.
Curran Associates, Inc., 2010.

[4] Ziyu Wang, Nando de Freitas, and Marc Lanctot. Dueling network architectures for deep reinforce-
ment learning. CoRR, abs/1511.06581, 2015.

8


