
Robust Deep RL for Autonomous Driving
Guillaume Chhor, Shreyash Pandey, Vivekkumar Patel

Stanford University

Introduction
•Self-driving cars: topic of great interest in AI
field

•Use of Deep Reinforcement Learning to solve
this task efficiently.

•High dimensional and complex task: use of
TORCS Simulator

•We study impact of sensors’ noise in RL
agent’s performance.

TORCS Simulator

Sensor Inputs
TORCS provides 18 different types of sensor inputs
that define the agent’s state. The following inputs
are considered most useful:
•Angle between the car direction and the direction
of the track axis.

•Speed of the car along the X,Y and Z axis.
•Vector of 4 sensors representing the rotation
speed of wheels.

•Number of rotation per minute of the car engine.
•Distance between the track edge and the car
within a range of 200 meters.

•Distance between the car and the track axis.
Visual Display
Training the algorithm using the raw pixels from the
visual display as the agent’s state was also an option.

Figure 1: Visual display use for training with raw pixels as input

Pros: OpenAI gym like interface. Pre-existing RL
experiments available on GitHub.
Cons: Only available for linux. Difficult to run on
Azure without display. Training with visual display
impossible on Azure.

DDPG Algorithm

To deal with continuous action spaces, DeepMind
came up with policy-gradient actor-critic algorithm
called Deep Deterministic Policy Gradients (DDPG)
that is off-policy and model-free.

1 Stochastic behavior policy for good exploration
but estimates a deterministic target policy, which
is much easier to learn.

2 Two neural networks, one for the actor and one
for the critic. Actor generates actions, critic
evaluates them.

3 Deterministic policy gradient updates weights of
the actor network. Critic network updated using
TD-error signal.

yi = ri + γQ′(si+1, µ
′(si+1|θµ

′)|θQ′)

Lcritic = 1
N

Σi(yi −Q(si, ai|θQ))2

4 DDPG theorem by Silver et al.
∇θµµ ≈ E[∇aQ(s, a|θQ)|s=st,a=µ(st)∇θµµ(s|θµ)|s=st]

Implementation Details

1 ε-Greedy exploration, prioritized Experience
Replay to break correlations, target
networks to stabilize training.

2 Actor Network: 2 hidden layers, maps sensor
inputs to steering, acceleration and brake values.

3 Critic Network: concatenates state encoding
(hidden layer representation for sensor inputs)
with actor prediction and calculates Q value.

4 Adam optimizer with a higher learning rate for
critic than actor, to make sure updates to actor
network are stable.

5 Reward function:
Rt = V cos θ − V sin θ − V |trackPos|

6 Intuition: Maximize velocity along the track,
minimize velocity along the transverse axis and
remain in the center of track if the speed is high.

7 We add noises of different levels during training
and testing and experiment with new
architectures.

Actor Critic Algorithm

Figure 2: Interactions in a Actor Critic Algorithm

Additive White Gaussian Noise

Circuits and sensors generally suffer from White
Gaussian Noise.
•White: Power is same at all frequencies -
completely random!.

•Gaussian: At any time t, noise z(t) ∼ N (0, σ) .

Train and test scores

Figure 3: Training and testing with different levels of noise

•X-axis has σ for noise, with inputs normalized to
have unit magnitude.

•Training and testing on different tracks.
•A small noise helps perform better.
•Algorithm breaks down with around 20% noise.

Noise / No-noise Comparison

Train | Test No Noise Noise (σ = 0.1)
No Noise 3579 2340

Noise (σ = 0.1) 3137 3312
Table 1: Performance of Algorithms with and without Noise

The results show that the agent trained with noise
is, as expected, more robust at test time in presence
of noise than an agent trained without noise. More
over it performs almost as well as the agent trained
without noise in an environment without noise.

Key Observations

•Training with small noise makes the agent more
robust and gives better performance.

•Adding extra layers to the network to counter
noise doesn’t work.

•At 20% noise power, algorithm breaks.
•As noise power increases, it takes longer for the
algorithm to converge. Blue curve indicates
σ = 0.05, green indicates σ = 0.13.

Figure 4: Training Curves with two different noises

Challenges and Future work
•Policy gradient methods prone to local optima.
Need repeated runs to see if bad performance
due to noise.

•Read multiple samples at a time and feed to
the network, hoping that it learns to somehow
average and reduce variance of noise.

References

• Silver, David, et al. "Deterministic policy gradient
algorithms." ICML. 2014.

• github.com/only4hj/DeepRL

